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Abstract

The changes needed in the mathematical description of differential scanning calorimetry
causced by periodical inodulation of temperature are presented. Calibration procedures and
possible extlensions of the method are suggested, all based on the model of scanning
calorimetry without temperature gradient within the sample. The basic differential
equation for heat flow under modulation conditions is solved and the steady siate
identified. The main advantage of modulated differential thermal analysis is the climina-
tion of nonperiodic heat losses and gains. It is suggested that the precision of heat capacity
measurement may be increased by a factor of 10 using proper calibration. The thermal
analysis in transition regions is discussed.

1. INTRODUCTION

Modulated differeatial scanning calorimetry (MDSC) is a recent varia-
tion of differential scanning calorimetry (DSC) with constant heating or
cooling rates. The first more detailed descriptions of MDSC were given at
the 9th ICTA meeting in Hatfield, UK [1,2]. An initial review of the
method was given by Reading [3], who originally conceived MDSC and
developed, in conjunction with TA Instrumenis, the well-known commer-
cially available equipment [4]. The MDSC of TA Instruments is modulated
at the block temperature 7,(t) with a sinusoidally changing amplitude that
is governed, as in standard DSC, by the temperature measured at the
sample position
(1) =T+ qt + Ay, sin wt - (1)

where ¢ is the underlying linear heating rate and 7, is the initial isotherm at
the beginning of the scanning experiment. The modulation frequency w is
equal to 2x/p in units of s, with p representing the length of one cycle
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Fig. 1. Schematic dingram of an MIDSC,

(s). Note that all variables and consiants used in the equations are defined
in more deiail in Section 2. The reference sine wave of eqn. (1) thus adds a
small sinusoidal component to the linear heating ramp gt. All phase lags of
the periodic modulation are to be determined with reference to eqn. (1).
Figure 1 shows a schematic diagram of the TA calorimeter cell with the
pusitions where the various temperatures can be found. Similar modulation
can be used with any of the other isoperibol scanning twin calorimeters
which are described. for example, in refs. 5 and 6.

In this paper we discuss, based on a mathematical description, calibration
procedures and heat capacity measurements. In an earlier paper [7], the
experimental details and limits for measurement of heat capacity using the
quasi-isothermal method, described in Section 4, have been evaluated for
ihe instrument shown in Fig. 1 and need not be repeated. The influence of
kinetic changes of the heat capacity, which may occur in the glass transition
region, are now being investigated. The experimental rezults and kinetic
‘analysis in the transition region will be published in due time [8]; a short
discussion is given in Section 7. Slow changes due to chemical reactions,
such as, for example, curing and the cffect of oxidation of C;, at elevated
temperature on the measurement of heat capacity [9], were found to be
guantitatively eliminated as source of error when using MDSC. Similarly,
heat leaks due to temperature drifts in the environment, or due to slow
“evaporation or sublimation that are common causes of error in DSC are
eliminated as causes for error by the modulation. A more difficult problem
to resolve is the treatment of the data of MDSC during phase transitions
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lnvolvmg Iarge latent heats not far from the cqunhbrlum of zero- entrbpy-
production thperatures In these cases the latént hedls tiiay be bnly
partially reversing with the uz.mlhmng, temperatiire HLLL'iiu‘;e of the asym-
metry of ihe meliing and crystalludtlon processes [10] or becatise the
steady-state of the calorimeter is interrupted (see Sections 3 and 8). A
detailed descnptlon of the influence of modulation for such transitions is in
preparatlon but is not yet available. Empirical descrlptlons are given,

however, in refs. 1-3 and in many of the manufacturers’ application briefs.

2. DEFINITION OF SYMBOLS USED AND LISTING OF OUTPUT
PARAMETERS

For MDSC, variables and constants may have a somewhat ditferent
definition than for DSC. The listing that follows is sarted in order to use in
the equations derived, starting with eqn. (1). Symbols with different
subscripts are mostly te be found under the saiue entry, frequent subscnpts
ate b for block, r for reference, s for sample, and A for difference.

T() modulated temperature/K (cr °C) For simplicity of the
derivations we assume 7(r) is corrected for all instrumental
parameters such as thermocouple effects and lags. Depending
on the added subscript, 7 is the bicck, sample, or reference
temperature (7;, 7., or T,, respectively). The temperature
Jifference 7, — 7T,= AT is proportional to the measured heat
Aow HF(t}/W. As AT, HF is inclwied in the calculations only
after corrections,

T, temperature at time zero/K. At time zcero it is usually assuni=sd
that 7, =7, = T, = T7,,; furthermore for simplificatior: of integra-
tions, T, is sometimes taken to be zero.

q underlying heating rate/K min~'. For quasi-isothermal measu-
rements g = 0, for scanning experiments g is the linear change
of temperature, disregarding the sinuscidal change in heating
rate due to modulation (d7 /df = g + Ay, @ cos wt).

t time/s.

Ay maximum amplitude of &z modulated temperature/K. Maxi-
mum modulation amplitudes of the heater block temperature,
sample temperature, and reference temperature are A, Ay,
and A.,., respectively. The maximum amplitude of the tempera-
ture difference 7, — 7. is A,. It can be related to the maximum
heat flow amplitude A4,,- by an appropriate conversion factor
with dimension W K ' (note that K. A, = KA,).

w=2x/p modulation.

P period of one cycle/s.

wt reference sine wave angle/rad. ThlS is the sinusoidal modula-
tion against which all phase lags are determined (see eqn. (1)).
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C.(t) heat capacity at constant pressure, usually given per mole of
' material/J K~!' mol~'. For the calorimeter as a whole, the heat
capacity is measured in J K~', C, is the heat capacity of the
reference calorimeter and C, is the heat capacity of the sample
calorimeter. When using an empty pan as reference C,=C’
and the heat capacity of the sample calorimeter C, is then
(when used with an identical pan as the reference calorimeter)
mc, + C’, where m is the sample mass/g and ¢, is the spec1ﬁc

heat capacity/J K~' g~! of the sample.

Q heat added/J. As before, subscripts are added to designate heat
added to the sample (Q.) or reference (Q,) (both are zero at
t = Q).

K Newton’s law consiant/J s™' K™'. To simplify the calculations K

is assumed tc be identical to sample and reference calorimeters.
Note that the modulation time is usually given in seconds, while
linear heating rates are often given in minutes. In the latter case
the dimension of X must be changed appropriately.
" heat capacity calibration constant; it is dimensionless. Used for
the calculation of the reversing part of the heat capacity in
MDSC.
£, ¢, 6, b phase shifts of the modulation {phase angles)/rad, relative to
the modulation phase at the block temperature (see eqn. (1)).
The phase angles &, ¢, and & refer to 7, 7;, and AT & is the
experimentally determined difference £ — 8.

K.

Next, it is of interest to summarize how some of the experimental data
are extracted from the experiment. Figure 2 illustrates in the upper sketch
the phase-shifted temperature 7,. The bottom graph illustrates how the
modulation of 7, can be separated into one part that is in-phase with 7,
(component described with sin wt), and another that is out-of-phase (com-
ponent described with cos wt). The sum is given at the bottom of the graph
(for g and 7;, = 0) and described in detail in Sections 3 (eqns. {6) and (6a))
and 4 (eqn. (10)). Similar curves can be drawn for 7, and AT. The first job is
then to extract the effect of the modulation from the recorded signals. This
can be accomplished by a Fourier transform or deconvolution of the
reversing part of the signal. Note that the oscillating part of the signal
averages to zero when integrated over a complete cycle In practice, the
deconvolution is dene by continued integration, averaging and smoothing

over several cycles. indicated by the average symbol {). A typicai output at
the time &,

Heat capacity

Colt)[= Ky X (A (E)) GA (1)) X w]/mI K-
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AhalySis df Temperature Modulalion

Frequency given as w=2mn/p (in radians/s)
Phase-shifled temperature:

p = period
of one cycle
(in s)
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Fig. 2. The modulation of temperature. The upper sketch represents the phasc-shifted
temperature 7 relative to themodulated block temperature 74, the latier being represented

by egqn. (1). Both curves are shown after subtraction of 7, + ¢¢, and arc plotted in normalized
dimensionless temperature units of 77/A,.

Reversing heat flow
Cp (1) X (g (t.))/mW

(If heat flow is recorded with the endothermic (positive) direction
downwards (as, for example, in the TA Instruments MDSC), one must
multiply C, by —1.)

Nonreversing heat fiow

(HF(2,)) — Co(t. g (1.))/mW

(Multiply C,, by —1 if heat flow is recorded with the endothermic direction
downwards.)

Phase
(P(1,)y/rad

For on-line observation, the data are available only a certaln time- after
measurement because of the delay caused by the deconvolution and
- smoothing. The heat capacity is first evaluated from the modulation of AT
and T, as expressed by the maximum amphtudes as described, for example,
by eqns. (21)-(24). Next, the reversing heat flow is computed by
multiplication of the heat capacity with the heating rate g. The nonrevers-
-ing heat flow is, finally, computed by subtracting the reversing heat flow
frqm the total heat flow (ihe latter is identical to the result from standard
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Fig. 3. Example output of an MDSC experiment on poly(ethylene terephthalate) [4]. The
insert in the upper ieft shows the modulated heat-flow amplitude (¢ =5 K min ', p =2 min,
Ay =7.5K). Note the climination of the enthalpy relaxation at the glass transition and the
hecat of erystallizalion from the heat capacity (REV HF).

DSC). In principle, this nonreversing heat flow is, thus, the base line for the
determination of the reversing heat capacity. Figure 3 shows an example of
an experimental output.

At this point one may ask the question: is MDSC worth the additional
effort (and expense)? Normal DSC can also measure heat capacity, namely
by subtraction of a suitable, previously determined base line, and
calibration with runs using an empty pan and a sapphire standard [5]. Using
a three-position DSC (triple calorimeter) it is even possible to compress the
heat capacity measurement into a single run [11]. Why then measure C,
with a new modulation method and then subtract it from the total heat flow
to get a base line that is not needed anymore for heat capacity
measurement? The answer can be given in two parts, First, the modulation
gives a better precision in heat capacity. We estimate that for equal masses
the precision may be higher by as much as a facter 10 [7]. All error signals
of frequencies other than w are ecliminated. Second, the nonreversing signal
may contain important information on irreversible processes, such as slow
chemical reactions {oxidation, curing, evaporation, etc.) and nonequilib-
rium phase transitions {(crystallization and reorganization); it may even
enable us to separate the complicated simultaneous fusions, glass transi-

tions, and annealings, common in many macromolecules. All this certainly’
" makes for a more powerful technique, that may well be called the greatest
advance in DSC since its inception some 35 years ago. It also gives an
incentive to make a special effort to understand the theory behind the
technique and to establish its limits.

The phase angle is also listed as an experimentally available pardmeter.
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It could also be used for different data interpretation as will be shown in
Section 6. Up to now, it seems, however, more advantageous to use the
maximum amplitudes A for measurement of heat capacity.

3. THE STEADY STATE

First, it will be shown that a sample in a location separated by a thermal
resistance from a heat reservoir that changes its temperature 7Ti as indicated
in eqn. (1) will reach a steady state that changes in temperature with the
heating rate g and contains a phase-shifted temperature oscillation of the
same frequency w as the reservoir (heater block of Fig. 1}. The maximum
amplitude A., the heating rate g, and the hecat capacity C, are, for the
present derivation, assumed to be constant with time and temperaturé. The
basic condition for the following derivation is to have only negligible
temperature gradients within the sample and reference, so that all heat
flow is governed by the thermal resistance outside the sample and reference
calorimeters, as contained in K. These conditions are the same as
commonly set for DSC [5]. Newton’s law of cooling is then, as usual

dQ
5, -~ KT — 7)) (2)

With the insertions for
Q =C,[T() —T)] (remember Q, = 0)

and
T.()=T,+ gt + Ay, sin wt

one can obtain the differential equation for heat flow

dQ l . Q]
= _ + A — = 3
; Klgt+ Ay sin wr ; (3)

The solution of this differential equation can be found in any handbook
(and checked by carrying out the differentiation suggested by eqn. (3))

C, e
Q =qCp|:f _Té-(] _e—hﬂtll)]
KAy,

T——;—-— [(_(I:{'_) sSin wf — w COS w! + we” "'”‘"f'] (4)
— + 2 .
(c,,) “
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At sufficiently long time, a steady state is reached (K¢ == C,) and eqn. (4)
reduces to

C? o X
Q =qC,t — AT KAy, [(—{E) sin wt — w cos mt] (5)

() e
n .

Division of eqn. (5) by C, gives the expression for the steady state
temperature 7(t) — 7

K
An(Z)
qC;, + "\,

K (K)2 .
—-] + =
C,

Equation (6) can be used to compute both 7, and 7; by insertion of the heat
capacities C, and C,, respectively. It represents the basic equation for
calorimetry by heat flow. The first two terms on the right-hand side
represent the temperature lag duc to heat capacity and heating rate in a
linearly heated calorimeter. The last term gives the modulation effect. It is
also dependent on heat capacity, and instead of being heating-rate
dependent, it is modulation-frequency and maximum-amplitude depen-
dent. As remarked above, both parts of eqn. {6) can thus be used for C,
measurement.

Next, a phase angle can be introduced (= for the sample temperature T,
(control position), and ¢ for the reference temperature 7;). Since

sin? € + cos? £ = 1, the following relationships can be extracted from eqn.
(6) *:

T —T,=qt -

[(g-,) sin wt — w cos wt] (6)

[43)
£ = arcsin = )
\[(K e
c/ ¢
s
£ = arccos C. (8)
s K
NEEE
: wC,
t = : 9
tane =" (9)

* One can check that eqns. (7) and (8) are correct and useful by insertion into eqn. (6):
T—=T=qt - (C,./K}+ Ay, cos g(cos £ sin wz + sin £ cos wr) (6a)

Notc that A, cus E= Ay .» and that the trigonometric functions can be simplificd by using the
addition lheorems (see eqns. (11) and (12))
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Furthermoreé, because A, cose =A,, and A, cos ¢ = A, and using the
addition theorems of trigonometric functions (cos 8sina £cosasin 8 =
sin(a = B)), eqn. (6) can finally be rewritten as

C. . |
T.— T, = gt —q—k-i-A—,;sm(wt—s) (10)
and

qC. .
T.—To=qt— X + Ay, sin(wt — @) (11)

Equations (10) and (11) can now be used to express the temperature
difference (or heat flow) signal of the MDSC. The derivaticn follows the

derivation of the equations for standard DS(C as given, for example in ref. 5,
Section 4.4.2.

4. EQUATIONS FOR QUASI-ISOTHERMAL HEAT CAPACITY
MEASUREMENT

For the ineasurement of heat capacity under practically isothermal
conditions (g = 0) use can be made of the oscillating temperature 7, and
temperature difference AT . The general equations of steady-state tempera-
ture difference can be derived from eqn. (2) by substituting temperature for

0, assuming that the heat capacity is constant over the amplitude of
temperature oscillation

(C.— CJAT, G, a(T—T) ,
K dt K dr - 2y

Equation (12) is derived by subtracting the expressions for 7, — 7;, from the
analogous expressions for 7; — 7;, resulting from egn. (2), and adding and
subtracting (C,/K)(d7./dt). To simplify the calculations, the oscillating
temperature 7, and temperature difference A7 can be inserted into eqn.
(12) as complex expressions *

T.—T.=

T. = Ayiet | - (13)
T,— T,= AT = Ajiet=—" (14)
| C.=C) . . e Co
Aael(tol—ﬁ) — (_'.—‘K—_)Av;lweltml | I— E A._\twe (iwr—=8) (15)
. KA.;i A.&Cr
o ir—8) = + 16
© A’I'\.w(cs - Cr) A‘I'-.(Cs - Cr) ( )

* Using sin 8 = icos @ = xi e, the more common cos 8 + i sin & = e*'” differs from the

expression used here by a phase shift of 2/2, necessary since the initial condition at time zero
is ,=T.=T,=7,and AT =(. '
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By equating the imaginary and the real parts on both sides of eqn. (16}, one
finds

. . KA,
— 5 = =
sin(e )=sin® A,.0(C.~C) (17)
_ _ _ ALC,
cos(g 8) = cos d)—An(Cs— o) (18)

Equations (17) and (18) are linked to the experiment via measurement of ®
(see Section 2). Furthermore, since sin®® + cos? ¢ = 1, one can derive an
expression for the heat capacity

_ KA, )" ( AL C, \2
= +
! (A ?Lw(Cs — Cr) A'l'.(Cs - Cr) (19)
(C.—Cy=2= (5) +C2 (20)
T w

Equation (20) leads to a particularly simple expression for the heat
capacity C,, if C, is zero, i.e. if no empty pan is placed on the reference side
of the DSC (C, =0). The measured , is, as usual, the heat capacity of the

sample nic,,, plus the heat capacity of the empty pan C,,. The heat capacity
of sample and pan is then

KA,
=~ 21
A-;;w ( )

This equation compares to the exmperimental output given in Section 2.

For the case of an empty pan (identical to the sample pan) on the
reference position, the calibration equation takes the form

Ay (K )2 -
. = 2 =) +Cc*= 22
nic, - \/ C (22)

i.e. in this case the overall calibration is dependent not only on the
frequency of modulation, but aiso on the heat capacity of the empty
reference pan.

Switching reference and sample pans, so that the control- the:mocouple is
‘on the reference side (the side of the empty pan or without pan), is a useful
technique when working without modulation. Under such conditions the
recorded temperature 7; is proportional to time ¢, even through transitions,
.giving the recorded 7 versus AT area proportionality to heats of transition
(base-line method) [S]. In the case of modulation, the calibration with
-control of the reference calorimeter is, however, more difficult

(C.— C)—::":‘ (—g)z+¢g - - | (23)

C.=
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Note that in eqn. (23) A, refers to control at the reference side, i.e. it is in

the prior notation A,.. For the condition that C, << C,, the sample heat
capacity is equal to

KA. o
C.=mc, + C ——ﬂ _(24)

If, in addition A, <K< A, eqn. {24) reverts back to the simple callbratlon
equation (eqn. (21)).

The measurement of heat capacity is now rather simple. The tempera-
ture range of interest is divided into, typically, 10 K intervals and the
MDSC is programmed after an isotherm of about 3 min to measure at each
temperature the heat capacity for, let us say, 10 to 30 cycles of oscillation. A
300 K temperature range can thus be ccvered overnight, leaving the
daytime operation for faster nonisothermal MDSC or DSC applications. A
complete heat capacity analysis would consist of (perhaps three) measure-
ments of C,, and a measurement of a calibration standard, such as sapphire,
to be able to eliminate K at each temperature (at the chosen amplitude and
modulation frequency). It is advisible to check how often the calibration
must be repeated, i.e. how stable is the MDSC. Sequential measurement
and calibration is initially advisable, followed by increasing the calibration
interval as experience on the instrument stability is gathered. Examples of
such measurements are given in ref. 7. By continucus operation it should
thus be possible to completely characterize one to two samples per week, or
100 per year without interrupting daytime work. The complete literature on

polymers does, however, at present contain no more than 100-200 such
characterizations!

5. EQUATIONS FOR NONISOTHERMAL HEAT CAPACITY MEASUREMENT

The deconvolution of the experimental signal (see Section 2) separates
the oscillating portion of the signal from the total average using several
cycles of modulation. The oscillating part can be used, as before, for the
measurement of heat capacity (reversing mode). The (smoothed and
averaged) total heat flow is linked to the first parts of eqns. (10) and (11)
(the part free of trigonometric functions). (Note that the oscillations give
positive and negative contributions that average to zero for every complete
cycle.) A full treatment of its relatlonshlp to heat capacity is available in the
descriptions of standard DSC [S]. In principle, the heat capacity can thus be
extracted from both, the oscillating (reversing) and the total signal [3], as
discussed in Section 2. The total, averaged temperature difference is, again,
given by eqn. (12). The common DSC analysis is in this case carried out by
assuming that at steady state ¢ can be equated to dT/dt (i.e.dt = dT/q) If
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furthermore, the thermal analysis is carried out such that C, = nic,, + C"and
C.=C’, egqn. (12) simplifies 1o

mc, = KAT/qg + [(KAT/q) + C’']dAT /dT. _ (25)

Only if the actual baseline is close to horizontal, so that dAT /d7, =0, is the
heat capacily of the sample easily assessed as KA7 /g (by analogy Lo eqn.
(21)). Under all other circumstances the recording of AT (or HF) misses a
certain portion of the heat cuapacity due to the fact that sample and
reference calorimeter do not change their temperaiurc with the same rate
(dAT /AT, # 0). Fortunately the error is usually small (about 1% for 45°
slopes if the sensitivity of recording AT is 100 times that of 7). This error
could easily be corrected because the term in brackets is approximately
equal to the heat capacity (C, = ¢, + C'), but to our knowledge it has not
been done, except in software generated in our laboratory [11].

In contrast to the normal DSC, one finds that the heat capacity extracted
rom the modulation (MDSC, eqns. (21)-{24)) gives a precise representa-
tion, as in the isothermal heat capacity measurement described in Section 4.
Care must be taken, however, to carry out the proper calibration, as
discussed above. ‘the advantages of MIDSC thus lie not only in the
elimination of any slow drifts of the calorimeter and irreversible processes
in the sample, but also in the direct ability to link the measured A7 to heat
capacity. _

The nonreversing part of the thermal analysis, obtained by subtracting
the reversing part from the total (see Section 2), is naturally only
approximately represented by (HF(t)) — C,(1){g) because it still contains
the effect from the difference between sample and reference heating rates
on heat capacily. To make the small correction, eqn. (25) can be used.
Frequently, however, the nonreversible heat capacity is only used as
baseline for a heat of transition measurement. If these heats are more than
one order of magnitude larger than the change in enthalpy caused by the

change in heat capacity over the same temperature range, this correction
should be negligible.

6. PHASE ANGLES

A comment must be made about the interpretation of the phase angles.
Equation (9), for example, shows that simple calorimetry (commonly
known as AC calorimetry) is possible making use of the sample calorimeter
‘only (i.e. not using twin or triplz calorimetry). The phase angle e, if it could
‘be determined with sufficient precision, would give a measure of heat
capacity of the sample (without need to analyze the differential heat flow).
The reference calorimeter, in turn, can supply via the phase lag ¢» the heat
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capacity of the empty pan. If C. is set experimentally, as usual, to be C’, one
can most easily obtain the heat capacity of the sample

(C,— C)) =g(tan £ —tan ¢) (26)

K
me, =— (tan £ — tan ¢) (27)

In case a three-position DSC cell is available (TA DSC cell 912), single-run
DSC can be nerformed by using the third position for determining the
phase lag for a caiibration sample such as sapphire (Al,O,) contained in,
again, an aluminum pan identical to the empty reference pan of heat
capacity C'. Single run heat capacity measurement without modulation
with the TA 912 cell was developed in our laboratory [11], as mentioned
above, and cculd be improved by adding the modulation capability. ,
Again the questlon must be asked: why not using the phase angles? The
answer seems 10 lie in the natu:e of the phase angle, as can be seen from
Fig. 2. Small changes in phase angle are difficult to establish. The
amplitudes, in contrast, have a recasonable value over much of the complete
cycle, so that the average maximum amplitude A can be determined with
much larger precision than the phase angles.

7. SOME REMARKS ABOUT TRANSITIONS

Transitions are of interest to thermal analysis since they indicate the
limits of solids, mesophases, and liquid states. Similarly, a chemical
transition is always coupled with a change in thermal parameters and can
thus be followed conveniently by thermal analysis. Measuring with MDSC
will, in principle, be able to register any reversible transition and ignore any
irreversible, spontaneous change. The latter can, in turn, be measured by
the total heat flux (see Section 2) if before and after its occurrence steady
state is attained. One uses then the baseline method to bridge the
time/ltemperature interval during which the calorimeter is out of steady
state [S5]. In this fashion a much better characterization. of any material
should be possible than by DSC alone. Complications arise, however, if the
heat effect is so large that it disrupts the steady state of the MDSC, as
expressed by eqns. (6), (10) and (11). Besides the interruption of steady
state, one often finds that transitions are only partially reversible. Then
MDSC could drive valuable information on the degree of reversibility
(assuming that any deviation from steady state is negligible or can be
properly assessed). In this area of separation of instrument effects due to

- loss of steady state and deviation from reversibility further quantltatwe
work is. necessary
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Enthalpy and Heat Capacily in the Liquid
Glass Transition Region
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: - Temperature/ K o
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Fig. 4. Schemalic diagram of the enthalpy in the glass transition region.

A qualitative analysis of the superposition of a reversible and an
irreversible process is schematically illustrated in Fig. 4 for the example of
the glass transition analyzed by quasi-isothermal MDSC (see Section 4).
Somewhat below the glass transition temperature 7,, the heat capacity
follows any change of the temperature almost mbtantaneously Molecular
dynamics simulations have shown that for solid polvmers the time involved
to reach a steady state temperature is in the picosccond range (107'2s) [12].
One can thus write the solid heat capacity simply as

C,(solid) = C,, (28)

by representing the vibrational heat capacity by C,, as it is available
through the Advanced THermal Analysis System, (ATHAS) [13]. Other
contributions to C,(solid) are usually negligible. The parallel thin lines in
Fig. 4 represent _the enthalpies H(=f C, dT) of various glasses that were
cooled at different rates. The higher the line, the faster was the liquid
cooled through the glass transition. Once in the glassy state, all heat
capacities are the same (but not the enthalpies).

In the liquid state, longer times are needed to reach thermal equilibrium
because of the need of the molecules to undergo larger, cooperative,
structural changes. A simple model for the represenlatlon of these motions
has been given by Eyring [14a] and Frenkel [14b] in terms of a hole theory,
i.e. the larger expansitivity of liquids and the slower response to external
forces is said to be due to changes in a hole equilibrium. The equilibrium
number of holes is N each contributling an énergy g, to the enthalpy. The
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hole contribution to the heat capacity is then given by the change in
number of holes with temperature under equilibrium conditions

dNF
C,(liquid) = C,,, + eh( dT: ' 29

Creation, motion, and destructions of holes are, however, kinetic processes
and may be slow. This leads to deviations from eqn. (29) if the
measurement is carried out faster than the kinetics allows. Applied to the
glass transition, one can write a simple, first-order kiiietics expression [15]

that has been extended to describe the time-dependent, apparent heat
capacity in the glass-transition region [16]

with N representing the instantanecus number of holes, and N, again the
equilibrium number of holes; 7 is the activation energy for the formation of
holes. Both Nj*and 7 are available through the hole theory [16].

Some 5 te 10 K above 7, most one phase and one compcnent systems
show no kinetic effects when heating or cooling rates are slower than about
20 K min~'. The enthalpy is equal to the heavy curve in Fig. 4. On going
through 7,, the glassy state is reached at different temperatures for different
cooling rates, freezing-in different numbers of holes and giving rise to the
multitude of glasses with different enthalpies indicated in Fig. 4. Usmg
MDSC the slope of the enthalpy of these glassy states can be measured,
irrespective of the enthalpy level. In the temperature range where
modulation frequency and relaxation times are comparable, eqn. (30)
must be considered.

Let us now first follow a stepwise cooling and heating experiment in
which long-time quasi-isothermal MDSC experiments are carried out
sequentially between 7, and 7. At T, the heat capacity is represented by
eqn. (29), the modulation is slow enough to be followed by the kinetics
of eqn. (30). Cooling quickly to T; yields initially a glass represented by the
upper thin enthalpy line. At this temperature the modulation frequency is
already too fast to measure anythmg but the heat capacity of the glass (eqn.
(28)). Since the measurement is carried out over many modulation cycles,
the enthalpy relaxes to lower levels of enthalpy in an irreversible process.
These enthalpy changes are little affected by the small temperature“
oscillations, and thus not measured by MDSC. The lower left insert
illustrates this downward drift that can be computed with the use of eqn.
(30). Even if ultimately the equilibrium liquid were reached, as suggested in
the figure, the measured heat capacity would still be that of the solid since
- the hole equlhbnum could not be changed mgmficantly durmg the
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modulation period. Continuing to 7 the enthalpy relaxation is less, but
again unrecorded by MDSC. At 7,, a metastable glass has finally been
reached. On reheating, the relaxations at 7, and 7; would, again, not be
recorded. During the jump to 7, the relaxation time is shortened sufficiently
that the hole contribution can be measured and C, is again represented by
eqn. (29). On the cooling as well as on the heating run the heat capacity
between 7, and 7: is intermediate between eqns. (28) and (29), giving a
glass transition temperature at half-vitrification [17] that is governed only
by the time scale of modulation. In this way MDSC is able to establish a
precise {(modulation time scale dependent) glass.transition temperature on
cooling as well as on heating. Normal DSC is unable to do the latter
because of the simultaneous recording of heat capacity and enthalpy
relaxation. Special methods are necessary to extract the glass transition
from a DSC trace measured on heating and showing enthalpy relaxation,
and even then, one can only assess the glass transition that corresponds to
the prior cooling rate (thermal history) [S].

Continuous heating and cooling experiments are expected to give a
continuous recording, blurred somewhat over the temperature range of
modulation.

A number of details are still missing in this analysis of the glass transition
and will be addressed more quantitatively in the near future [8]. The main
problems and opportunities for information to be gained by MDSC of the
glass transition are the need to have the instrument calibrated simul-
taneously for heating and cooling (to properly follow the modulation), to
understand deviations of the glass transition from the simple kinetics of
eqn. (30) (the inherent symmetry for approach to equilibrium from above
and below the liquid enthalpy line is not in agreement with experiment),
and to develop the proper description in the narrow range of temperature

where the modulation time scale is similar to the relaxation time in eqn.
(30).

8. CONCLUSIONS

The now commercially available MDSC has brought the method of
modulation to thermal analysis for separation of signal and noise. As
expected, the major influence is on quantitative use of the technique, i.e.
the measurement of heat capacity. There is no doubt that in this application
a major advance has occurred. For the interpretation of high-energy
transitions, the technique is not yet well enough understood to enable
quantitative use, but the separation of reversing components from the total
‘measured effect ylelds in most applications important additional informa-
tion, and it is hoped that it will take only little additional time until the
limits of quantitative analysis have been established in all areas.
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